
VENTECH

N.		
		and the second second

Reverse Flange Bar Grille

General Information:

This range of grille has the necessary characteristics for its integration in contemporary architecture and interior design. They can be installed in ceilings, walls, consoles, fancoils, induction units, both for supply and return air application and, properly reinforced, in floors.

The maximum recommended length is 3m in one piece, although 2 or more modules can be combined so as to give appearance of continuity.

Features:

- Made of extruded aluminium
- Fixed blades at 0-degree, 15-degree, 30-degree
- Rigid, heavy gauge extruded frames with reinforced mitered and welded corners
- Standard finish white, other finishes are available
- Surface mounting or concealed mounting
- Size manufactured on request
- Construction is of a fixed core

Flow rate		L	1000	1000	1000	1000	1000	1000	1000	1000
		н	50	75	100	125	150	200	250	300
(m³/h)	(l/s)	A _k	0.024	0.0370	0.0500	0.0630	0.0820	0.1080	0.1400	0.1720
100 27		V _k	1.2	0.8	0.6					
	27.8	<u>Х</u> Р.	2.3	1.9	1.6					
		NR	- 0.8	- 0.3	- 0.2					
		V _k	1.4	0.9	0.7					
120	33.3	X	2.8 1.1	2.2	1.9	<u> </u>				
		P, NR		- 0.5	- 0.3					
		V _k	1.6	1.1	0.8					
140	38.9	<u>Х</u> Р.	3.2 1.5	2.6 0.6	2.2					
		NR	-	-	-					
	44.4	V _k	1.9	1.2	0.9					
160		<u>Х</u> Р.	3.7 2.0	3.0 0.8	2.6					
		NR	-	-	-					
		V _k	2.1	1.4	1.0	0.8				
180	50.0	<u>Х</u> Р,	4.1 2.5	3.3 1.1	2.9 0.6	2.6 0.4				
		NR	8	-	-	-				
		V	2.3	1.5	1.1	0.9				
200	55.6	<u>Х</u> Р,	4.6 3.1	3.7 1.3	3.2 0.7	2.8				
		NR	10	-	-					
		V _k	2.9	1.9	1.4	1.1	0.8			
250	69.4	<u>Х</u> Р,	5.8 4.9	4.6 2.0	4.0	3.6 0.7	3.1 0.4			
		NR	16	7	-	-	-			
		V	3.5	2.3	1.7	1.3	1.0	0.8	0.6	
300	83.3	<u>Х</u> Р.	6.9 7.0	5.6 2.9	4.8 1.6	4.3	3.7 0.6	3.3	2.9 0.2	
		NR	21	11	-	-	-	-	-	
	97.2	V _k	4.1	2.6	1.9	1.5	1.2	0.9	0.7	0.6
350		<u>Х</u> Р,	8.1 9.5	6.5 4.0	5.6 2.2	5.0	4.4 0.8	3.8 0.5	3.3 0.3	3.0 0.2
		NR	25	1.0	9	-	-	-	-	-
400	111.1	V	4.6	3.0	2.2	1.8	1.4	1.0	0.8	0.6
		<u>Х</u> Р,	9.2 12.4	7.4 5.2	6.4 2.9	5.7 1.8	5.0	4.3	3.8	3.4 0.2
		NR	28	19	12	8	-	-	-	-
	125.0	V,	5.2	3.4	2.5	2.0	1.5	1.2	0.9	0.7
450		<u>Х</u> Р,	10.4 15.7	8.3 6.6	7.2 3.6	6.4 2.3	5.6 1.3	4.9 0.8	4.3	3.9 0.3
		NR	31	22	15	11	5	-	-	-
500	138.9	V _k	5.8 11.5	3.8 9.3	2.8 8.0	2.2 7.1	<u>1.7</u> 6.2	1.3 5.4	1.0 4.8	0.8 4.3
		P.	11.5	9.5	4.5	2.8	1.7	1.0	0.6	0.4
		NR	34	25	18	13	8	-	-	-
600	166.7	V _k	6.9 13.8	4.5 11.1	3.3 9.6	2.6 8.5	2.0 7.5	1.5 6.5	1.2 5.7	1.0 5.2
		P,	28.0	11.1	6.4	4.1	2.4	1.4	0.8	0.5
		NR	38	29	23	18	12	6	-	-
700		V, X	8.1 16.1	5.3 13.0	3.9 11.2	3.1 9.9	2.4 8.7	1.8 7.6	1.4 6.7	1.1 6.0
	194.4	P,	38.1	16.0	8.8	5.5	3.3	1.9	1.1	0.7
		NR	42	33	27	22	16	10	5	- 1.2
800 Z	2222	V _k X	9.3 18.4	6.0 14.8	4.4 12.8	3.5 11.4	2.7 10.0	2.1 8.7	1.6 7.6	1.3 6.9
	222.2	Ρ,	49.7	20.9	11.5	7.2	4.3	2.5	1.5	1.0
		NR V _k	46	37 6.8	30 5.0	25 4.0	20 3.0	14 2.3	8	- 1.5
900	250.0	Х		16.7	14.4	12.8	11.2	9.8	8.6	7.7
	230.0	P,		26.5	14.5	9.1	5.4	3.1	1.8	1.2
		NR V,		40 7.5	33 5.6	28 4.4	23 3.4	17 2.6	11 2.0	7 1.6
1000	277.8	X		18.5	15.9	14.2	12.5	10.9	9.5	8.6
1000		P,		32.7	17.9	11.3	6.7	3.8	2.3	1.5
		NR V,		42	36 6.7	31 5.3	25 4.1	20 3.1	14 2.4	10 1.9
1200	333.3	X			19.1	17.1	14.9	13.0	11.4	10.3
1200-		P,			25.8	16.2	9.6	5.5	3.3	2.2
		NR V,			41	36 6.2	30 4.7	24 3.6	19 2.8	14 2.3
1.100	200.0	X				19.9	17.4	15.2	13.3	12.0
1400	388.9	P,				22.1	13.0	7.5	4.5	3.0
		NR				40	34	28	23	18