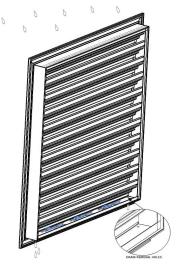


Large Weather Proof Louvre


General Information

A louvre is a ventilation product that allows air to pass through it while keeping out unwanted elements such as water, dirt, and debris. A number of fixed operable blades mounted in a frame can provide this functionality. The basic considerations for selecting louvres are Louvre Free Area, air flow and resistance to airflow (Pressure Loss).

Features:

- Made of high quality aluminium
- Water proof blades design
- Wire Vermin mesh provided
- Standard finish: Anodized Aluminium
- Size manufactured on request

VENTECH

Quick Selection Table

					300 x 100	400 x 100	500 x 100	600 x 100	500 x 150	600 x 150			600 x 200	800 x 200	1000x200	1000x300	900 x 400	
Flow rate		Dim	200 x 100	200 x 100		50 200 x 200 -					300 x 300	800 x 150						1000x400
					200 x 150		250 x 200	300 x 200	300 x 250	360 x 250			400 x 300	500 x 300	600 x 300	750 x 400	600 x 500	
(m³/h)	(l/s)	A _K	0.0051	0.0025	0.0079	0.0108	0.0133	0.0215	0.0272	0.0321	0.0402	0.0473	0.0479	0.0664	0.0609	0.1366	0.1758	0.01433
50		V _k	2.7	2.1	1.8	1.3	1.0	0.8							\bigcirc			
	13.9	Pt	12.0	7.4	5.0	2.7	1.8	1.0										
		NR	25	20	16	9	5	-1										
60	16.7	V _k	3.3	2.6	2.1	1.5	1.3	0.9										
		P _t	17.3	10.7	7.2	3.9	2.5	1.3										
		NR	30	25	21	14	10	3										
70	19.4	V _k	3.8	3.0	2.5	1.8	1.5	1.0										
		P _t	23.5	14.5	9.8	5.3	3.5	1.7										
		NR	34	29	24	18	13	6										
80	22.2	V _K	4.4	3.4	2.8	2.1	1.7	1.2										
		P _t	30.8	18.9	12.8	6.9	4.5	2.2										
		NR	37	32	28	21	17	9										
90	25.0	V _K	4.9	3.8	3.2	2.3	1.9	1.3	0.9									
		P _t	38.9	24.0	16.2	8.7	5.7	2.7	1.4									
		NR	40	36	31	24	20	12	4									
	27.8	V _K	5.4	4.3	3.5	26	2.1	2.1	1.0									
100		P _t	48.1	29.6	20.0	10.7	7.1	6.9	1.7									
		NR	43	37	33	27	22	24	7									
	44.4	V _K		6.8	5.5	4.1	3.3	2.6	1.6	1.4	1.1							
160		P _t		75.5	51.3	27.4	18.1	10.8	4.3	3.1	2.0							
		NR		49	45	36	34	29	19	15	10							
200	55.6	V _K			7.0	5.1	4.2	3.2	2.0	1.7	1.4							
		P _t			80.1	42.9	28.3	16.9	6.8	4.9	3.1							
		NR			50	44	39	36	24	21	16							
250	69.4	V _K				6.4	5.2	3.9	2.6	2.2	1.7	1.5	1.4	1.0				
		P _t				67.0	44.2	24.3	10.6	7.6	4.8	3.5	3.4	1.8				
		NR				49	45	39	30	26	21	18	18	11				
300	83.3	V _K					6.3	5.2	3.1	2.6	2.1	1.8	1.7	1.3	1.0			
		P _t					63.5	43.3	15.2	10.9	7.0	5.0	4.9	2.6	1.7			
		NR					49	46	34	31	26	22	22	15	11			
400	111.1	V _K						6.5	4.1	3.5	2.8	2.3	2.3	1.7	1.4	0.8		
		P _t						67.6	27.0	19.4	12.4	8.9	8.7	4.5	3.1	1.1		
		NR						52	41	38	33	30	29	22	18	7		

Symbols:

A_K- Effective area

 V_k - Effective velocity in m/s

Pressure (P_t) - All pressures are in Pa (N/m²)

 $\ensuremath{\mathsf{NR}}$ - Noise level index in dB based on a room absorption and one diffuser

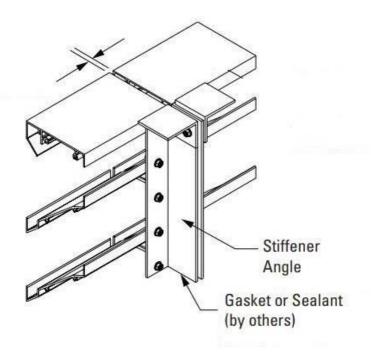
Quick Selection Table

					300 x 100	400 x 100	500 x 100	600 x 100	500 x 150	600 x 150			600 x 200	800 x 200	1000x200	1000x300	900 x 400	
Flow rate		Dim	200 x 100	200 x 100			350 x 150	400 x 150	400 x 200	450 x 200	300 x 300	800 x 150	500 x 250	600 x 250	800 x 250		700 x 500	1000x400
					200 x 150	200 x 200	250 x 200	300 x 200	300 x 250	360 x 250			400 x 300	500 x 300	600 x 300	750 x 400	600 x 500	i i
(m³/h)	(l/s)	A _K	0.0051	0.0025	0.0079	0.0108	0.0133	0.0215	0.0272	0.0321	0.0402	0.0473	0.0479	0.0664	0.0609	0.1366	0.1758	0.01433
500	138.9	V _K						6.5	5.1	4.3	3.5	29	2.9	2.1	1.7	1.0		
		P _t						67.6	42.2	30.3	19.3	14.0	13.6	7.1	4.8	1.7		
		NR						52	47	43	39	36	36	28	24	13		
600	166.7	V _k							6.1	5.2	4.1	3.5	3.5	2.5	2.1	1.2	0.9	
		P _t							60.8	43.7	27.8	20.1	19.6	10.2	6.9	2.4	1.5	
		NR							51	48	43	40	39	32	28	17	12	
700	194.4	V _K							7.1	6.1	4.8	4.1	4.1	2.9	2.4	1.4	1.1	0.6
		P _t							82.8	59.4	37.9	27.4	26.7	13.9	9.4	3.3	2.0	0.7
		NR							55	52	47	43	43	36	32	21	15	4
800	222.2	V _K								6.9	5.5	4.7	4.6	3.3	2.7	1.6	1.3	0.7
		P _t								77.6	49.5	36.8	34.9	18.1	12.2	4.3	2.6	0.9
		NR								56	50	47	46	39	36	24	19	7
900	250.0	V _K									6.2	5.3	5.2	3.8	3.1	1.8	1.4	0.8
		P _t									62.7	45.3	44.1	23.0	15.5	5.4	3.3	1.1
		NR									53	50	49	42	38	27	22	10
1000	277.8	V _k									6.9	5.9	5.8	4.2	3.4	2.0	1.6	0.9
		P _t									77.3	55.9	54.5	28.4	19.1	6.7	4.0	1.4
		NR									56	52	52	45	41	30	24	13
	444.4	V _K												6.7	5.5	3.3	2.5	1.5
1600		P _t												72.6	48.9	17.2	10.4	3.6
		NR												57	52	41	36	25
	566.6	V _k													6.9	4.1	3.2	1.9
2000		P _t													76.4	26.5	16.2	5.5
		NR													58	47	41	30
3000	833.3	V _k													1	6.1	4.7	2.8
		P _t														60.4	36.4	12.5
		NR														57	51	40
3600	927.2	V _K															5.5	3.2
		P _t															40.5	17.0
		NR															56	44
4000	1111	V _K															6.3	3.7
		P _t															64.7	22.2
		NR															59	47

Symbols:

A_K- Effective area

 $\rm V_{\rm k}\text{-}$ Effective velocity in m/s


Pressure (P_t) - All pressures are in Pa (N/m²)

NR - Noise level index in dB based on a room absorption and one diffuser

Installation Instructions for Weatherproof Louvre:

- 1. Determine the required dimensions for the cut-out by referring to the dimensions of the galvanised steel box. Opt for a smaller opening to ensure a secure fit for the box.
- 2. Cut an appropriate opening in the wall using the suitable cutting method based on the material (brick, weatherboard, or sheeting).
- 3. Install the vent by first inserting the galvanised steel box into the cut-out and then securing the louvre to the wall. Once the louver is level and in the proper position, fasten the louvre frame to clip angles with screws (by others). Caulk around the entire perimeter of the louver using a silicone-based adhesive. Ensure a complete seal around the outside of the plate's face to prevent water penetration
- 4. **WARNING**: If it is multiple-section louvre installation, structural steel or stiffener angle (by others) is required to support the middle join section, caulk the gap between multiple sections to avoid water penetration.

